还在担忧电池寿命?精准预测试一试

时间:2020-04-26 15:36来源:汽车之家 作者:李争光
点击:
       电池电动车最核心的部分,但是就目前技术而言,电池实际健康状况和剩余寿命预测依旧是个难题。日前,据外媒报道,剑桥大学和纽卡斯尔大学研究人员设计出可预测电池健康状况的机器学习方法,将助力动力电池的开发和电动汽车推广。
 
  据悉,这种方法是通过向电池发送电脉冲并测量其响应来进行监测,并可利用机器学习算法处理这些测量数据,从而预测电池的健康状况和使用寿命。研究人员称,这种测量方式的准确度是目前行业在用方法的10倍。
 
  动力电池在运行过程中,内部会发生复杂微妙的化学变化,长此以往严重影响电池的性能和寿命。目前电池健康状况的预测方法主要以跟踪充放电过程中的电流和电压为基础,但并不能显示电池的具体状态。这两所大学开发出的检测方法,则可发现电反应的具体特征,找到电池老化的讯号。
 
  截至目前,研究人员进行20000多次测量实验来训练模型,这是同类测试数据中的最大数据集。此外,该模型还学会了如何区分无关噪声和重要信号,了解到哪些电信号最有可能与电池老化有关,可进一步探究电池退化的原因和方式。当然,这种非干预式方法,可以轻松应用至当前所有电池系统。
  这套机器学习平台,可以展示电池中各种化学成份的退化过程,更有助于行业开发最优电池充电计划,以实现快速充电,并尽量减缓电池退化。
 
(责任编辑:子蕊)
文章标签: 动力电池 电池寿命
免责声明:本文仅代表作者个人观点,与中国电池联盟无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非中国电池联盟)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:503204601
邮箱:cbcu@cbcu.com.cn
猜你喜欢
专题
相关新闻
本月热点
欢迎投稿
联系人:王女士
Email:cbcu#cbcu.com.cn
发送邮件时用@替换#
电话:010-56284224
在线投稿
微信公众号