高比能长寿命锂离子电池的研究

时间:2020-11-17 20:59来源:《电源技术》杂志 作者:综合报道
点击:

       导读

       本文采用先进的经过包覆处理的高密度NCA材料,并通过对电极面密度、隔膜、电解液等设计参数的优化设计,电池结构密封性的优化,提高电池性能,制备了18650型高比能长寿命锂离子电池。

       锂离子电池具有比能量高,使用寿命长的优点,目前已成为卫星用储能电池的首选。商用的18650型锂离子电池由于技术成熟、尺寸标准、价格低廉,其在低成本微卫星领域已得到一定的应用。

       随着锂离子技术的发展,高比能电池材料的开发向着高电压材料、高镍三元、5 V高电压材料等方向发展[1]。其中,高镍NCA材料具有比容量高,结构稳定性好的优点,成为高比能长寿命锂离子电池开发的重点材料之一[2-4]。本文采用先进的经过包覆处理的高密度NCA材料,并通过对电极面密度、隔膜、电解液等设计参数的优化设计,电池结构密封性的优化,提高电池性能,制备了18650型高比能长寿命锂离子电池。
 

1

实 验

       1.1 电池制作

       分别将正、负极活性物质、导电剂和粘结剂以一定比例混合后,加入一定的溶剂搅拌均匀,正负极浆料分别涂覆到铝箔、铜箔上,电极碾压、分切后,烘干,卷绕,装配,焊接,注液,封口,制备成18650圆柱型锂离子电池。

       1.2 电池性能测试

       倍率性能测试:在室温环境下,电池以0.2C恒流恒压充电到4.2V,0.01 C截止,电池分别以0.2C、0.5C、1C放电到2.75V,记录电池容量。

       加速循环寿命测试:在常温下,电池在4.20~2.75 V电压范围,以0.5C/0.5 C 100%放电深度进行充放电循环,记录电池容量。

       LEO轨道寿命测试:在常温下,以0.5C恒流恒压充电到4.2V,0.01 C截止,以0.5C放电36min,然后电池以0.5 C恒流恒压充电至4.20 V后转0.5C电流放电,重复上述充放电循环,记录截止电压。

       空间环境适应性:参照《GJB6789-2009空间用锂离子蓄电池通用规范》对电池进行密封性、稳态加速、随机振动、正弦振荡、冲击及热真空实验。

2

结果与讨论

       2.1 正极材料的选择

       选择了三种不同型号的NCA材料制备18650实验电池,进行了电性能测试,具体实验结果见表1。

表1 不同型号NCA电性能测试结果

        从表1的数据可以看出,三种高密度NCA材料中,综合比容量发挥,循环寿命两方面的因素,材料3#更适合作为高比能长寿命锂离子电池的正极材料。

        2.2 电化学参数的优化

        2.2.1 电极面密度的优化

       对A、B两种面密度电池进行倍率与循环寿命的对比,优化电池的面密度设计参数。A、B两种电池的倍率测试结果见表2。A、B两种电池的加速寿命测试曲线见图1。

表2 电池的倍率放电数据

图1 A、B两种面密度电池循环测试曲线

        从表2倍率测试数据可以看出,A、B两种面密度设计的电池在0.5C、1C倍率条件下没有差异。从图1的循环曲线看,在循环到600次时,电池A的容量保持率为91.5%,电池B的容量保持率为89.5%,低面密度A具有更好的循环性能,但两种面密度电池的循环衰降趋势基本相同。目前低轨卫星的放电电流一般在1C以下,所以对于高比能电池,在保证电池性能的前提下,选择高面密度的电极设计。

       2.2.2 隔膜的优化

       对实验电池进行电性能测试,测试结果见表3。
 

表3 不同隔膜电性能测试数据

        从表3中T、P电池(T为陶瓷涂层隔膜电池,P为PP/PE复合隔膜电池)的测试数据可以看出,在倍率性能上,两种隔膜的倍率性能基本相同,但陶瓷涂层隔膜具有更好的循环寿命,一方面陶瓷隔膜比普通的PP/PE隔膜具有更好浸润性,另一方面陶瓷涂层可以提高隔膜高电压下的抗氧化能力,可以有效提高电池的循环寿命。

       2.2.3 电解液的优化

       对高比能长寿命电池来说,电解液与正负极的匹配性,浸润性与稳定性很大程度上决定了电池的性能。目前,电解液中常用的锂盐是六氟磷酸锂,通过对电解液溶剂配方与添加剂的调整,可以改善电极的浸润性,SEI成膜的致密性与稳定性,从而提高电池的性能[5-7]。J.R.Dahn等[8]讨论了各种电解液添加剂对电池性能的影响,认为要提高电池的循环性能,必须要添加电解液添加剂,使正负极形成钝化膜,降低电荷转移电阻,降低副反应。

       对采用了不同溶剂配方与添加剂的电解液实验电池进行性能测试,其加速循环寿命测试结果见图2。

图2 不同电解液电池循环测试曲线

       从加速循环寿命测试可知,03#电解液表现出更好的循环稳定性,加速循环寿命测试500次时,容量保持率为93.6%。

       2.3 电性能及环境适应性研究

       2.3.1 容量及倍率

       通过正极材料的筛选与电化学参数的优化,电池密封结构的优化,制备了空间用容量为2.852Ah的18650电池,电池的测试结果见表4。

表4 电性能数据

        由表4电池的测试数据可知,电池比能量可以达到252Wh/kg,对电池进行倍率性能测试,电池0.5C放电容量为2.832Ah,容量保持率为99.3%,1C放电容量为2.826Ah,容量保持率为99.1%。这证明电池的倍率性能良好。

       2.3.2 LEO循环寿命

      参照卫星LEO轨道循环制度,对电池进行地面模拟LEO轨道寿命评估,图3为电池的LEO轨道寿命循环曲线。从图中可以看出,电池在进行了1.0万次循环后,放电截止电压仍然在3.7V以上,地面模拟寿命长达2年,循环性能良好。

图3 LEO轨道寿命循环曲线

        2.3.3 空间环境适应性

     参照《GJB6789-2009空间用锂离子蓄电池通用规范》对研制的电池进行密封性测试,电池的漏率为1.4×10-10~2.1×10-10Pam3/s,漏气率均小于1×10-7Pam3/s,检测结果满足要求。

       参照《GJB6789-2009空间用锂离子蓄电池通用规范》对研制的电池进行稳态加速、随机振动、正弦振荡、冲击及热真空实验。实验过程中电池的电流及电压均未发生突变,且实验完成后电池无任何机械损伤,检测结果满足要求,本文不再展示放电曲线。

      参照《GJB6789-2009空间用锂离子蓄电池通用规范》对研制的电池按照表5测试条件进行热真空实验,图4为电池在热真空循环过程中首次低温放电曲线与末次高温充电曲线。

表5 热真空实验条件

图4 热真空首次低温放电曲线与末次高温充电曲线

       如图4所示电池在热真空实验过程中,充放电正常,实验后,蓄电池无变形、无开裂、无漏液。满足空间环境适应性要求。

结 论

      通过对正极材料的选型优化,电极面密度、隔膜、电解液等重要电化学参数的设计优化,电池密封结构的优化,制备了NCA体系2.852Ah 18650电池,电池比能量达到252 Wh/kg,1C倍率放电容量保持率为99.1%,地面模拟LEO轨道寿命长达2年以上,并且通过了《GJB6789-2009空间用锂离子蓄电池通用规范》的环境适应性实验,可应用于微小卫星电源系统,满足商业航天发展对航天器产品提出的轻小型、低功耗、高可靠的要求。

       参考文献:

 
 
 
       [1]刘兴江,彭庆文,许寒,等.动力锂离子电池新材料及体系关键技术研究[J]. 中国科技成果,2016,17(23): 77-78,80.
 
       [2]WATANABE S, KINOSHITA M, NAKURA K. Capacity fade of LiNi(1-x-y)CoxAlyO2 cathode for lithium-ion batteries duringaccelerated calendar an cycle life test. I. Comparison analysis between LiNi(1-x-y)CoxAlyO2 and LiCoO2 cathodes incylindrical lithium-ion cells during long term storage test[J]. Journal ofPower Sources, 2014, 247: 412-422.
 
       [3]HWANGS Y, CHAN W Y, KIM S M, etal. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2cathode materials induced by the initial charge[J]. Chem Mater, 2014, 26(2): 1084-1092.
 
       [4]艾新平.下一代动力电池及材料发展趋势探析[J]. 新材料产业,2012(9):10-14.
 
       [5]KANGK S, CHOI S, SONG J H, et al. Effect of additives on electrochemicalperformance of lithium nickel cobalt manganese oxide at high temperature[J].Journal of Power Soures, 2014, 253:48-54.
 
       [6]ZHAO H, YU X, LI J, et al. Film-forming electrolyteadditives for rechargeable lithium ion batteries: Progress and outlooks[J].Journal of Materials Chemistry A, 2019, 7(15):8700-8722.
 
       [7] LUO Zhi-yang, ZHANG Hong, YU Le, et al. Improvinglong-term cyclic performance of LiNi0.8Co0.15Al0.05O2cathode by introducing a film forming additive[J]. Journal of ElectroanalyticalChemistry, 2019, 833: 520-526.
 
       [8]PETIBONR,SINHAN N,BURNSJ C,etal. Comparative study of electrolyte additives using electrochemical impedancespectroscopy on symmetric cells[J]. Journal of Power Sourecs,2014,251:187-194.
 
(责任编辑:子蕊)
文章标签: 锂离子电池
免责声明:本文仅代表作者个人观点,与中国电池联盟无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非中国电池联盟)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:503204601
邮箱:cbcu@cbcu.com.cn
猜你喜欢
  • 锂离子电池隔膜的主要性能参数有哪些?

    锂电池隔膜 是 锂离子电池 关键的内层组件之一,其性能决定了 电池 的接口结构、内阻等,直接影响了电池的能量、循环以及安全性等特性,质量较高的隔膜对提高 锂电池 综合性能起到重要的作用。那么,锂离子电池隔膜主要性能参数有哪些呢? 1、厚度:对于消耗
    2023-01-24 18:18
  • 三元锂离子电池和磷酸铁锂离子电池的特点和优劣势详解

    动力蓄电池包括锂离子动力蓄电池、金属氢化物/镍动力蓄电池等。
    2022-05-07 11:46
  • 干货来啦!13个动力电池寿命安全问题答疑

    13个动力电池寿命安全问题答疑
    2021-11-16 09:26
  • 动力电池余能检测有“法”可依

    在政策引导和市场驱动下,新能源汽车市场份额不断增长,伴随第一批电动车退役,越来越多的动力电池下岗。在此背景下,动力电池回收形成产业,不断扩大规模,不仅避免二次污染,还能创造巨大的经济价值。 回收的电池都去哪了呢?一般来说,动力电池容量不足标
    2021-10-20 19:43
  • 宁德时代:NCM811锂离子电池高温存储性能衰退机理

    我们一起学习一下宁德时代在高温存储性能衰退方面的研究。
    2021-05-27 11:42
  • 锂电池容量衰减变化及原因分析

    目前,可知引起锂离子电池容量衰减的主要因素包括正负极表面形成SEI钝化膜、金属锂沉积、电极活性材料的溶解、阴阳极氧化还原反应或副反应的发生、结构变化及相变化等。
    2021-05-20 10:34
  • 高压镍基锂离子电池在高温日历容量衰减机理分析

    本研究重点研究了锂离子电池在非自加热温度区域的充放电性能变化,采用由热稳定性最低的镍基正极材料(充满电状态)组成的18650锂离子电池在80°C储存下,研究了电池的性能劣化行为和机理。
    2021-05-17 11:41
  • 黄学杰团队:锂离子电池补锂技术

    本文总结了补锂技术的发展状况和本课题组在补锂技术方面的一些工作,并展望了补锂技术在锂离子电池中的应用前景。
    2021-05-07 11:35
  • 软包锂离子电池封装技术

    软包锂离子电池封装的意义与目的在于使用高阻隔性的软包装材料将电芯内部与外部完全隔绝,使内部处于真空、无氧、无水的环境。
    2021-04-21 11:44
  • 高镍三元材料热失控机理的研究

    清华大学欧阳明高院士团队和美国阿贡国家实验室的Dr. Khalil Amine团队共同合作,阐明NCM811电池的热失控机理,揭示正极的氧释放对热失控的触发作用。
    2021-04-12 11:26
专题
相关新闻
本月热点
欢迎投稿
联系人:王女士
Email:cbcu#cbcu.com.cn
发送邮件时用@替换#
电话:010-56284224
在线投稿
微信公众号