研究背景
锂离子
电池中电解质界面的稳定性对
电池的高能量密度和长循环寿命至关重要。众所周知,以碳酸酯基的电解质在负极材料上被还原形成固体电解质中间相(SEI),但它们在正极材料上可能发生的(电)化学反应我们知之甚少。富Ni的LiNixMnyCo1-x-yO2材料提供了更高的能量密度,但代价是缩短了循环寿命。最近的计算研究表明,碳酸酯溶剂分子可以在NMC上被化学氧化或脱氢,特别是随着Ni含量的增加。因此,碳酸酯电解液的氧化机制值得我们深入研究。
成果简介
鉴于此,麻省理工学院的Yirui Zhang(通讯作者,第一作者)和YangShao-Horn(通讯作者)教授团队设计了一原位傅立叶变换红外光谱(FT-IR)方法,它为碳酸酯溶剂在LiNixMnyCo1-x-yO2(NMC)上的脱氢氧化提供了前所未有的证据。碳酸乙烯酯(EC)在Pt表面到4.8V(相对与Li)时是稳定的,而EC在LiNi0.8Co0.1Mn0.1O2(NMC811)上时,在3.8V就会发生脱氢反应。NMC811表面发现了来自EC的独特的脱氢物种,包括附着在氧化物上的脱氢EC、碳酸乙烯(VC)和可以向外扩散的脱氢低聚物。基于EMC和LP57(1MLiPF6in3:7EC/EMC)的电解液在NMC811上也有类似的脱氢反应。相比之下,NMC111或通过包覆Al2O3等表面改性的NMC表面并未发现脱氢反应。另外,当溶剂脱氢时能在1M不同阴离子的电解质中观察到,在高浓度电解质(3.1MLiPF6的EC/EMC)中的NMC811上均未观察到,说明锂离子配位可以抑制脱氢。电化学阻抗谱(EIS)显示,NMC811上的碳酸盐脱氢伴随着界面阻抗随电压的增加而快速增长,而没有脱氢的电解液组合没有显著的阻抗增长。因此,通过调节电极反应活性和电解质,可以使NMC表面的碳酸酯脱氢最小化,这是开发高循环寿命高能锂离子电池的关键。这一研究以 “Revealing Electrolyte Oxidation via Carbonate Dehydrogenation>in situFourier Transform Infrared Spectroscopy” 为题发表在 Energy Environ. Sci. 期刊上。
图文导读
图1. 在EC(1.5 M LiPF6)中,NMC811表面的FT-IR测试。
NMC811充电过程中,在低至3.8VLi时,在~ 1830,1820 ~ 1810 cm - 1,和~ 1763 cm – 1处的特征峰的出现和生长为EC在此时的脱氢提供了直接电解液氧化证据(图1c)。其中EC在电极表面游离,除去一个氢生成de-H EC,再除去另一个氢形成VC,或与另一个EC结合形成齐聚物。虽然在4.4 VLi电压保持期间,C=O拉伸区域(1900到1700 cm-1)的差异频谱没有显著变化(图1d),但在4.4 VLi电压保持之后,大多数峰值强度随OCV时间的增加而降低(图1b和1e)。OCV (60min后)的光谱可分为4个特征,VC在~1830 cm-1, de-H EC在~ 1813 cm-1,低聚物在~1820 cm-1(和1763 cm-1), EC在1800 cm-1。随着OCV时间的延长,VC、低聚物和EC的峰值迅速降低,说明这些物质从带电的NMC811扩散到电解质中。值得注意的是,VC强度降低的速度比低聚物和EC快,这表明VC具有更大的扩散性或溶解度。相反,de-H EC的峰值强度(~ 1813 cm - 1)随着时间没有明显变化(图1 b和e) , 推测可能是在NMC811表面氧的EC脱氢过程中形成的C-Osurface键(图1f)。
图2. 在LP57电解液中,第一次充电至4.8VLi,不同的NMC表面的原位FT-IR测试。
相比之下, NMC811的光谱(图2 b)显示出,在大于3.8V时,有新的EC脱氢物质的峰位,包括EC (~ 1813 cm - 1,大于3.9 VLi), VC (~ 1830 cm - 1,大于4.1 VLi)和低聚物(~ 1820 ~ 1763 cm - 1,大于4.1 VLi)(图 2b)。然而,NMC111在第一次充电至4.8 VLi时,没有明显的新峰位产生,这说明没有明显的溶剂氧化。LP57中EC在NMC811和NMC111上脱氢氧化的差异表明,EC在NMC811上有更大的金属氧共价和更多的O 2p钉扎在费米能级,其脱氢的驱动力远远大于NMC111。
图3. 在1 M LiPF6 / EMC中,NMC811表面的原位FT-IR测试。
在1 M LiPF6 / EMC中, NMC811在恒流从OCV充电到4.8 VLi(图3a)显示, 随着电压升高,EMC的峰值~ 1750 cm - 1转向更高的波数(图3b),这可能是de-Hb EMC,表明了EMC的脱氢氧化。在图3c中,从C中除去一个b位点的氢,并在氧化物上形成一个C-Osurface键,与DFT计算的光谱结构一致(图3d)。
图4. LP57电解液中,NMC622(a)和表面涂覆的NMC622(b)在第三圈充电至4.8 VLi时的原位FT-IR测试。
在第三次充电过程中的FTIR光谱中检测到了EC脱氢的产物,包含de-H EC (~1813 cm-1), VC (~1830 cm-1), 和具有类EC环的低聚物(~1820 and ~1763 cm-1) (图4、b)。然而,包覆有Al2O3的NMC622没有发现这种现象(图4c、d)。这种差异表明,表面惰性涂层,如Al2O3、ZrO2、HfO2对消除电解液氧化的影响。氧化物如Al2O3等热力学不利于EC的解离吸附,并降碳酸酯脱氢的驱动力。创建一个Ni-poor表面减少M-O covalency21 23可以提高循环性能。与未涂覆涂层的电极相比,涂覆涂层的富镍NMC电极具有更大的容量保持能力可归因于增强的抗脱氢稳定性。
图5. 在3.1M和1M的电解液中, NMC 811表面在充电至4.8 VLi时的原位FT-IR测试。
NMC811在高浓度电解液(3.1 M LiPF6 EC / EMC)中充电时,这种电解液含有更少的游离EC或游离EM,FTIR图谱中没有明显的EC或者EMC的脱氢或低聚物产物 (图5a、b)。图5a中的过电位可能是由于浓电解液的离子电导率较低和粘稠性造成的。电解液中Li+盐浓度的增加降低了NMC811的碳酸酯的活性,提高了NMC811抗氧化脱氢的溶剂稳定性,有可能提高NMC811的稳定循环性。在1 M LiClO4 (EC:EMC=3:7)中,在充电至3.8V时,NMC811中发现了EC的脱氢产物,且强度随着电压增大而增大(图 5d),这与在1M的LP57电解液中的行为类似。通过在含有1M LiClO4和LP57的EMC/EC中对VC的观察,证实了1M电解液中EC普遍脱氢,其碳酸酯活性高于高浓度电解液,氧化稳定性低于高浓度电解液(3.1 M)。
图 6 . NMC复合电极在第一次充电中的EIS测试。
在LP57电解液中,NMC811在第一次充电至3.9,4和4.6 VLi时,其EIS图谱中的低频半圆明显增大,这是因为在充电过程中,电子传输和EEI阻抗(Rct+EEI)从~10增大到超过300欧姆(图6a)。相似地,NMC811在其他非浓缩电解液中,包括1.5 M LiPF6(EC), 1 M LiPF6(EMC)和 1 M LiClO4( EMC/EC), Rct+EEI都发生了从~10到~400欧姆的戏剧化增长。在1M和1.5M电解液中,这种剧烈的阻抗增大,是由于脱氢产物和低聚物的形成。说明这些有机产物可能在NMC811表面形成了一层阻性层,使NMC811表面钝化,阻碍电荷转移。相反地,NMC811在高浓度的电解液中没有表明出明显的阻抗增大(图6c),这可能是因为更加稳定的界面以及没有脱氢产物的影响。对于NMC111和NMC622,Rct+EEI始终保持小于50欧姆,这是因为没有脱氢产物。由于NMC111和NMC622拥有更稳定的界面和更低的阻抗,因此具有比NMC811更好的循环稳定性。
图 7 . NMC表面的电解液的分解机理和途径。
电解分解包括溶剂(EMC和EC)分解和耦合盐(PF6-)分解。溶剂先通过脱氢分解,再通过脱去另一个氢或齐聚反应进一步分解de-H EC。来自脱氢过程的表面质子能进一步攻击PF6-并导致盐的耦合分解。分解后的产物(主要是溶剂分解产物)在EEI处形成电阻层,导致阻抗增大,最终导致NMC811的容量损失。
总结与展望
本文通过原位FTIR方法,研究了电解液在NMC表面随着电压变化的分解情况。EC在Pt表面在4.8 V时保持稳定,而在NMC811中,在 3.8V时发生脱氢反应。在NMC811表面观察到三种独特的EC脱氢产物,包括脱氢EC (de-H EC,固定在氧化物上)、碳酸乙烯(VC)和具有类似于EC的环状结构的脱氢的低聚物,而后两者可以从NMC811表面扩散到电解液中。相似的脱氢产物在EMC和LP57电解液中也有发现。然而,NMC111和涂覆Al2O3的NMC表面没有发现脱氢产物。在高浓度电解液中(EC/EMC,3.1 M LiPF6)也没有观察到脱氢反应。同时,随着充电电压的增加,NMC811表面的碳酸盐(EC和EMC)的脱氢伴随着界面阻抗的快速增长,没有脱氢反应的电解液组合则没有明显的阻抗增大。因此,通过调节电极活性和电解质活性可以使NMC表面的碳酸酯脱氢反应最小化,这是提高锂离子电池循环寿命和高能量的关键。
文献链接
Revealing Electrolyte Oxidation via Carbonate Dehydrogenation>in situ Fourier Transform Infrared Spectroscopy
(责任编辑:子蕊)