为了分析富锂材料在循环中电压衰降的机理,Enyuan Hu利用XAS工具分析了富锂材料在第1、25、46、83次循环后,材料中的Ni、Co、Mn和O元素的价态的变化趋势(如下图所示),从图中能够看到Ni、Co、Mn三种过渡金属元素的价态随着循环次数的增加呈现了明显的下降趋势。氧原子的变化主要发生在边前区域,从下图中能够注意到随着循环次数的增加,氧原子的边前峰强度呈现了明显的减弱趋势,这表明体相中的过渡金属元素与氧元素之间的键能降低。
通过对上述的XAS数据半定量分析,EnyuanHu得到了在1、2、25、46和83次循环时富锂材料中不同元素对材料整体容量的贡献(如下图a所示),从图中可以看到在首次循环时氧和镍供应了主要容量,分别达到128mAh/g和94mAh/g。但是随着循环的进行,氧和镍元素提供的容量迅速减少,在83次循环时,氧元素提供的容量仅为50mAh/g,镍元素提供的容量也下降到了66mAh/g。但是锰和钴元素贡献的容量却随着循环次数的增加而增加,例如第一次放电时锰、钴提供的容量分别14mAh/g和26mAh/g,但是随着循环到83次时,两者的容量分别增加到了66mAh/g和53mAh/g。
从上面的分析不难看出,富锂材料在循环中锰和钴元素增加的容量弥补了镍和氧元素损失的容量,使得富锂材料的整体容量没有太大的变化,但是这些容量的组成部分却发生了翻天覆地的变化,从氧和镍的氧化还原反应转向锰、钴的氧化还原反应会明显的改变富锂材料的电压特性。这一点也可以从费米能级图中得到解释,在开始的时候,富锂材料的费米能级仅仅稍高于Ni2+/Ni3+,因此富锂材料与金属锂之间的电位差比较高,但是随着循环的进行,富锂材料表面的氧发生了还原和析出,因此导致过渡金属元素的价态降低,而表层的Ni元素会被首先还原,在材料的表面形成一层没有活性的岩盐结构,导致镍元素提供的容量减少。而Mn和Co元素的还原则使得两者分别发生Mn3+/Mn4+ 和Co2+/Co3+,从而使得费米能级显著提高,从而导致开路电压的降低。
上面我们提到锂离子电池在循环中富锂材料的表面非常不稳定,为了分析循环过程富锂材料表面的结构变化,Enyuan Hu又采用了软X射线吸收进行了分析,从O K-edge图中能够看到,其边前峰的强度随着循环次数的增加持续的降低,导致这一现象的原因可能有两个,一个是富锂材料的表面层结构从层状结构向岩盐结构衰变,第二个原因是富锂材料电极界面因为电解液分解形成了一层包含Li2CO3, Li2O, LiOH, RCO2Li和R(OCO2Li)2的惰性层,C K-edge分析也发现了富锂材料电极表面层的Li2CO3的含量在循环中显著的增加了,这也支持了前面的分析。
通过ADF-STEM成像技术Enyuan Hu发现经过15个循环后,在富锂材料颗粒内部出现了相当数量的大孔,而这些大孔在新鲜的材料中是不存在的,根据测算这些大孔所占的体积达到1.5-5.2%,这意味着在15个周期中富锂材料最多可能损失了9%的氧。为了进一步确认上述的大孔形成的原因,作者采用STEM-EELS对富锂材料的颗粒进行了观察,发现在颗粒表面的开放性孔的孔壁上能够观察到了一层很厚的尖晶石/岩盐结构,这表明这些孔的形成与循环过程中的氧损失有着密切的关系。
Enyuan Hu的工作表明富锂材料在循环过程中的电压衰降的主要原因不是层状结构向岩盐和尖晶石结构转变,而是循环过程中过渡金属价态的持续降低。随着循环次数的不断增加,富锂材料会不断损失氧,导致表面的镍元素首先被还原形成岩盐结构,失去活性,同时伴随着锰和钴的反应价态持续下降,导致了富锂材料电压平台的不断降低。针对这一现象作者认为可以通过表面涂层和表面改性处理的方式,减少循环过程中的氧损失,抑制富锂材料的电压平台衰降。