当前位置: 电池联盟网 > 前沿 >

中国科学院推出筛选退役电池的新方法

时间:2023-06-29 08:48来源:盖世汽车 作者:刘丽婷
点击:
       近年来,得益于锂离子电池的高能量密度和低自放电特性,电动汽车的销量在许多国家都出现显著增长。然而,电动汽车电池的安全高效回收和分类已成为关注的焦点。
 
       据外媒报道,中国科学院(Chinese Academy of Sciences)福建物质结构研究所林名强博士课题组在期刊《Engineering Applications of Artificial Intelligence》发表了研究论文,提出一种基于格拉米角差场(Gramian angular difference fields,GADF)和ConvNeXt的退役电池筛选新方法。
 
       研究人员首先应用分段聚合近似技术(segmented aggregation approximation),以降低退役电池数据集在恒流充电电压曲线上的维数,利用滑动窗口生成与原始长序列数据表现出相似趋势的短序列数据。该过程实现了数据缩减,同时保留了基本特征信息,并减轻了计算负担。
 
       然后,该团队使用格拉米矩阵(GM)将简化的恒流充电曲线转换为二维图像。 采用GADF方法利用格拉米亚矩阵对一维时间序列信息进行编码。该技术对数据应用归一化和极坐标处理,然后进行内积运算来生成GADF图像。该技术有效消除了冗余的多模态信息,降低了数据非线性的影响,并减轻了噪声干扰。
 
       此外,研究人员还对GADF图像进行了分类,以筛选退役电池。ConvNeXt网络使用梯度下降和自适应矩估计权重衰减(AdamW)优化器,以动态更新卷积核的权重、偏差项、比例因子和其他网络参数,从而实现最佳性能。该优化器结合了权重衰减以防止过度拟合。通过反向传播算法,该网络从训练数据中学习了隐藏层的适当权重。这些权重在训练过程中不断更新和优化,以最小化损失函数。
 
       通过比较GADF和传统方法,以及对不同图像分类网络的评估,研究人员发现利用GADF作为ConvNeXt网络的输入可以提高筛选精度。未来的研究方向将主要集中于探索基于分压的退役电池筛选策略,并扩展数据集以验证模型的普遍性。
 
        这项研究为减少对手动选择功能的依赖,并提高数据驱动的退役电池筛选的准确性提供了指导。
 
(责任编辑:子蕊)
文章标签: 退役电池
免责声明:本文仅代表作者个人观点,与中国电池联盟无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非中国电池联盟)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:503204601
邮箱:cbcu@cbcu.com.cn
猜你喜欢
专题
相关新闻
本月热点
欢迎投稿
联系人:王女士
Email:cbcu#cbcu.com.cn
发送邮件时用@替换#
电话:010-56284224
在线投稿
企业微信号
微信公众号