当前位置: 电池联盟网 > 前沿 >

研究人员开发人工智能技术 优化电池安全性

时间:2020-04-26 08:23来源:盖世汽车 作者:Elisha
点击:
(图片来源:Cambridge官网)
 
       据外媒报道,研究人员设计了一种可以预测电池健康状况的机器学习方法,其准确度是目前行业标准的10倍,或将助力开发更安全、更可靠的电池,以用于电动汽车和消费电子产品。
 
       剑桥大学和纽卡斯尔大学(Newcastle Universities)的研究人员,通过向电池发送电脉冲并测量其响应来监测电池,接着利用机器学习算法处理这些测量数据,预测电池的健康状况和使用寿命。
 
       锂离子电池的健康状况和剩余使用寿命难以预测,这是限制电动汽车推广的一大难题。在运行过程中,电池内会发生一系列复杂微妙的化学变化,长此以往将严重影响电池的性能和寿命。目前预测电池健康状况的方法,主要以跟踪充放电过程中的电流和电压为基础,但并不能显示电池的具体状态。想要追踪电池内部发生的一系列过程,需要找到探测电池工作状态的新方法,也需要新的算法,探测充放电时的细微信号。
 
       本项研究负责人之一、剑桥大学卡文迪许实验室的Dr. Alpha Lee表示:“安全性和可靠性是最重要的设计标准,因为我们开发的电池体积小,容量大。通过改进监测充放电的软件,并利用数据驱动软件控制充电过程,相信我们可以大幅提升电池性能。”
 
       研究人员设计了一种方法,通过向电池发送电脉冲并测量其响应来监测电池。然后,利用机器学习模型,发现电反应的具体特征,找到电池老化的讯号。研究人员进行了20,000多次测量实验来训练模型,这是同类数据中最大的数据集。重要的是,该模型学会了如何区分无关噪声和重要信号。这种非干预式方法,可以轻松应用至当前所有电池系统。
 
       研究人员还发现,机器学习模型可以提供物理机制退化的线索。该模型能够显示,哪些电信号最有可能与老化有关,帮助他们设计具体实验,探究电池退化的原因和方式。
 
       研究人员通过机器学习平台,不断了解电池中各种化学成份的退化过程,并通过机器学习开发最优电池充电计划,以实现快速充电,并尽量减缓电池退化。首席作者之一Dr. Yunwei Zhang称:“机器学习可以补充和提升物理理解。机器学习模型识别出的可解释信号,是未来理论和实验研究的起点。”
 
(责任编辑:子蕊)
免责声明:本文仅代表作者个人观点,与中国电池联盟无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非中国电池联盟)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:503204601
邮箱:cbcu@cbcu.com.cn
猜你喜欢
专题
相关新闻
本月热点
欢迎投稿
联系人:王女士
Email:cbcu#cbcu.com.cn
发送邮件时用@替换#
电话:010-53100736
在线投稿
企业微信号
微信公众号