当前位置: 电池联盟网 > 前沿 >

中美研究人员合作预测电池参数 有望提升电动汽车安全性/效率

时间:2019-09-24 08:34来源:盖世汽车 作者:余秋云
点击:
       据外媒报道,为电动汽车提供动力的电池拥有几个关键的表征参数,包括电压、温度和变化状态(SOC)。由于电池的故障与此类参数的异常波动有关,能够有效地预测此类参数对于长期确保电动汽车安全、可靠地运行至关重要。
(图片来源:techxplore.com)
 
      北京理工大学(Beijing Institute of Technology)、北京电动汽车联合创新中心(Beijing Co-Innovation Center for Electric Vehicles)和美国韦恩州立大学(Wayne State University)的研究人员最近研发了一种基于深度学习的新方法,能够同步预测电动汽车电池系统的多个参数。该新方法基于长短时记忆(LSTM)递归神经网络,是一个深度学习架构,既能够处理单个数据点(如图像),又能处理整个数据序列(如语音记录或视频片段)。
 
       研究人员在北京电动汽车服务与管理中心(SMC-EV)收集的数据集上训练、评估了该LSTM模型,该数据集中包括一辆电动出租车在一年时间内存储的电池相关数据。该模型考虑到了电动汽车电池的三个主要表征参数,即电压、温度和SOC,而且具备独特结构和设计,其中包括的超参数都预先得到优化,也可离线接受训练。
 
       此外,研究人员还研发了一种方法,以进行天气-车辆-驾驶员分析。该方法考虑到天气和驾驶员行为对电池系统性能的影响,最终能够提升模型的预测精度。此外,研究人员还采用了提前中途退出的方法,通过在训练前确认最合适的参数,以防止LSTM模型过度拟合。
 
       对该LSTM模型进行评估和仿真测试之后得出了非常好的结果,新方法无需额外的时间来处理数据,而且比其他电池参数预测策略表现得更好。研究人员收集的结果表明,该模型可用于判断各种电池故障,并及时向驾驶员和乘客发出通知,以避免发生致命事故。
 
       研究人员发现,在完成离线训练之后,LSTM模型可以快速准确地完成在线预测。换句话说,离线训练并没有降低该模型预测的速度和准确性。
 
       未来,研究人员研发的电池参数预测模型将有助于提高电动汽车的安全性和效率。同时,研究人员计划在更多数据集上训练该LSTM网络,从而进一步提高其性能和通用性。
 
(责任编辑:子蕊)
文章标签: 电动汽车 电池参数
免责声明:本文仅代表作者个人观点,与中国电池联盟无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非中国电池联盟)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:503204601
邮箱:cbcu@cbcu.com.cn
猜你喜欢
专题
相关新闻
本月热点
欢迎投稿
联系人:王女士
Email:cbcu#cbcu.com.cn
发送邮件时用@替换#
电话:010-53100736
在线投稿
企业微信号
微信公众号